1. The potential energy of a particle varies with distance x from a fixed origin as

$$U = \left(\frac{A\sqrt{x}}{x+B}\right)$$

where, A and B are constants. The dimension of AB are

(a)
$$[ML^{5/2}T^{-2}]$$
 (b) $[ML^{2}T^{-2}]$ (c) $[M^{3/2}L^{3/2}T^{-2}]$ (d) $[ML^{7/2}T^{-2}]$

2. A satellite in force free space sweeps stationary interplanetary dust at a rate $\frac{dM}{dt} = \alpha v$, where *M* is the mass, *v* is the velocity of the satellite and α is a constant. What is the deceleration of the satellite?

(a)
$$-\frac{2\alpha\nu^2}{M}$$
 (b) $-\frac{\alpha\nu^2}{M}$ (c) $-\alpha\nu^2$ (d) $\frac{\alpha\nu^2}{M}$

3. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

(a)
$$\sqrt{GM/R}$$
 (b) $\sqrt{2\sqrt{2} GM/R}$ (c) $\sqrt{(1+2\sqrt{2})GM/R}$ (d) $\frac{1}{2}\sqrt{(1+2\sqrt{2})GM/R}$

4. Two spheres of radii 8 *cm* and 2 *cm* are cooling. Their temperatures are $127^{\circ}C$ and $527^{\circ}C$ respectively. Find the ratio of energy radiated by them in the same time

5. In a Carnot engine, the temperature of reservoir is $927^{\circ}C$ and that of sink is $27^{\circ}C$. If the work done by the engine when it transfers heat from reservoir to sink is $12.6 \times 10^{6}J$, the quantity of the heat absorbed by the engine from the reservoir is

(a)
$$16.8 \times 10^6 J$$
 (b) $4 \times 10^6 J$ (c) $7.6 \times 10^6 J$ (d) $4.25 \times 10^6 J$

6. When a big drop of water is formed from n small drops of water, the energy loss is 3E, where E is the energy of the bigger drop. If R is the radius of the bigger drop and r is the radius of the smaller drop, then number of smaller drops (n) is

(a)
$$4R/r^2$$
 (b) $4R/r$ (c) $2R^2/r$ (d) $4R^2/r^2$

7. Two point electric charges of magnitude q and 2q are at distance d apart from each other. A third charge Q is introduced in such a way that net force acting on q and 2q is zero. The position of the charge Q is:

(a)
$$(\sqrt{2} - 1)d$$
 from the charge q (b) $(\sqrt{2} - 1)d$ from the charge $2q$ (c) $(\sqrt{3} - 1)d$ from the charge q (d) none of these.

8. A charges particle of charge q is moved around a charge +q along a circular path of radius r from A to B. The work done is

(a)
$$\frac{qq_0}{4\pi\varepsilon_0 r}$$
 (b) $\frac{2qq_0}{4\pi\varepsilon_0 r}$ (c) $\frac{qq_0}{4\pi\varepsilon_0 r^2} \pi r$ (d) zero.

9. The magnetic field at the point of intersection of diagonals of a square wire loop of side L carrying current I is

(a)
$$\frac{\mu_0 I}{\pi L}$$
 (b) $\frac{2\mu_0 I}{\pi L}$ (c) $\frac{\sqrt{2}\mu_0 I}{\pi L}$ (d) $\frac{2\sqrt{2}\mu_0 I}{\pi L}$

10. A conducting circular loop is placed in a uniform magnetic field of induction B tesla with its plane normal to the field. Now, the radius of the loop starts shrinking at the rate (dr/dt). Then the induced *emf* at the instant when radius is r, will be

(a)
$$\pi r B (dr/dt)$$
 (b) $2\pi r B (dr/dt)$ (c) $\pi r^2 (dB/dt)$ (d) $\left(\frac{\pi r^2}{2}\right)^2 B (dr/dt)$

11. A simple harmonic motion is given by $y = 7 \left[\frac{\sqrt{3}}{2} \sin 2\pi t + \frac{1}{2} \cos 2\pi t \right]$ in meter. What is the amplitude of motion if y is in metre?

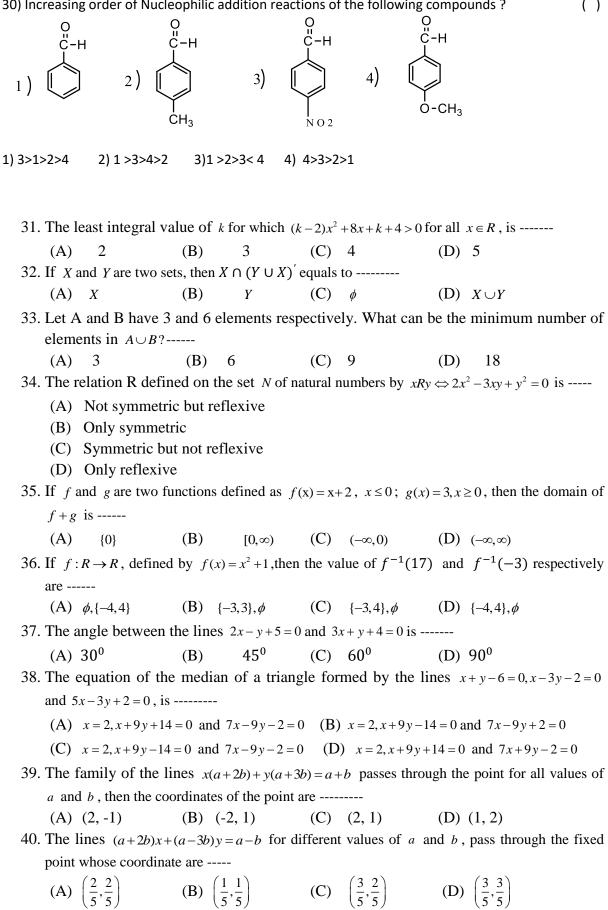
(a)
$$21m$$
 (b) $14m$ (c) $7m$ (d) $3.5m$

12. Young's double slit experiment has been carried out using monochromatic light of wave length λ . The path difference (in terms of integer n) corresponding to any point having half the peak intensity will be

(a)
$$(2n+1) \lambda/2$$
 (b) $(2n+1) \lambda/4$ (c) $(2n+1) \lambda/8$ (d) $(2n+1) \lambda/16$

13. A certain radioactive material $_{Z}X^{A}$ starts emitting α and β particles successively such that the end product is $_{Z-3}Y^{A-8}$. The number of α and β particles emitted are

(a) 4 and 3 respectively(b) 2 and 1 respectively(c) 3 and 4 respectively


14. At what speed does the kinetic energy of a particle equal to its rest energy? Consider c is the velocity of light in free space.

(a)
$$\frac{\sqrt{3}}{2} c$$
 (b) $\sqrt{\frac{2}{3}} C$ (c) $\frac{\sqrt{3}}{4} c$ (d) $\frac{1}{2} c$

15. The contribution in the total current flowing through a semiconductor due to electrons and holes are $\frac{3}{4}$ and $\frac{1}{4}$ respectively. If the drift velocity of electron is $\frac{5}{2}$ times that of holes at this temperature, then the ratio of concentration of electrons and holes is

16) During the electrol1) remains constarincreases					he electrolyte 4)decreases first and t	hen	()
17) Find the volume of (at weight of Mg=24 1) 6 Lt	-	_	electrolysis of 3) 10	-	vhich produces 6.6 g of N 4) 9 Lt	Лg		()
1) 011	27 5	LL	5, 10		-,) L L			
18) Which of the follow 1) ${}_{5}B^{10}$ 2) ${}_{4}Be$			₈ 0 ¹⁶					()
19) The half-life perioc)	d of radioactive	element is 140) days. After	560 days	, one gram of the eleme	nt w	ill	(
reduce to 1) ½ g	2) ¼ g	3) 1/8 g	4)	1/16 g				
20) The molarity of a s 1) 0.01M 2) 0.05M			hydrous Na₂(CO₃ per li	tre is			()
21) Which of the follov 1) molarity 2) mola	ality 3) formal	ity 4) normali	ity	-				()
	$25M H_2SO_4 red$	quired for the o	complete neu	utralizatio	on of 25ml of 0.03MCa(C)H)2		()
solution is 1) 20 ml	2) 30 ml	3)) 25 ml		4) 35 ml			
23)The crystal lattice c F [−] must be	of BaF_2 , the co-o	ordination num	nber of Ba ²⁺ i	s 8, the c	o-ordination number of			()
1) 2 2) 3	3) 4	ł	4) 6					
24) At what temperate energy of 0.4 mole of			le of Helium	be the sa	me as the total kinetic		()
1) 533.33 K	2) 600 K		672 К		4) 573 К			
25)At what temperatu 1) 1092 K 2) 890		obable velocity 3) 993 K		ecule is tv 4) 1080 I			()
26) If the R.M.S. veloci at same temperatur 1) 1000m/sec 2) 12	re?				velocity of H_2		()
1)100011/Sec 2)12	Southysed Sj	140011/380 4)	1000 m/set	-				
27) Radio active decay 1) O 2) 1	follows which 3) 2		? 4) 3				()
28) For a n th order read 1) a ¹⁻ⁿ 2) a ⁿ⁻¹	ction, Half life p 3) a		ely proportic a ⁿ⁻²	onal to			()
29) In which of the foll 1)1M Nacl 2)1M	-		t applied? 1M Sucrose	5		()	

30) Increasing order of Nucleophilic addition reactions of the following compounds ?

()

41. The range of *m* for which the line y = mx + 2 cuts the circle $x^2 + y^2 = 1$ at distinct or coincident point, is -----

(A)
$$[-\sqrt{3},\sqrt{3}]$$
 (B) $(0,\sqrt{3})$ (C) $[\sqrt{3},\infty)$ (D) $(-\infty,-\sqrt{3}] \cup [\sqrt{3},\infty]$
42. The focus of the parabola $y^2 - x - 2y + 2 = 0$ is -------
(A) $\left(\frac{1}{4},0\right)$ (B) $\left(\frac{1}{4},\frac{2}{3}\right)$ (C) $\left(\frac{5}{4},1\right)$ (D) $\left(\frac{5}{4},\frac{4}{5}\right)$
43. $\int \sin^{-1}x \ dx$ is equal to ------
(A) $x \sin^{-1}x + \sqrt{\sin^2 x - 1} + c$ (B) $x \sin^{-1}x + \sqrt{1 - x^2} + c$
(C) $x \sin^{-1}x + \sqrt{1 - \sin^2 x} + c$ (D) $x \sin^{-1}x + \sqrt{\sin^2 x + 1} + c$
44. $\int \frac{(\sin^{-1}x)^3}{\sqrt{1 - x^2}} dx$ is equal to ------
(A) $\frac{(\sin^{-1}x)^3}{2} + c$ (B) $\frac{(\sin^{-1}x)^3}{3} + c$ (C) $\frac{\sin^{-1}x}{x} + c$ (D) $\frac{(\sin^{-1}x)^4}{4} + c$

45. $\int_{0} (x \cdot \sin^2 x \cdot \cos x) dx$ is equal to ------

(A)
$$\frac{-4}{9}$$
 (B) $\frac{-2}{9}$ (C) $\frac{-5}{9}$ (D) 0

46. The differential equation of family of parabolas with foci at the origin and axis along the x – axis, is ------

(A)
$$x\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y = 0$$
 (B) $y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} + y = 0$
(C) $y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y = 0$ (D) $x\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} + y = 0$

47. A curve passing through the point $\left(1, \frac{\pi}{4}\right)$ and its slope at any point is given by $\frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$. Then the curve has the equation -----

(A) $y = x \tan^{-1}(\ln 2)$ (B) $y = x \tan^{-1}\left(\ln \frac{e}{x}\right)$

(C)
$$y = \frac{1}{x} \tan^{-1} \left(\ln \frac{e}{x} \right)$$
 (D) $y = \frac{1}{x} \tan^{-1} \left(\ln 2 \right)$

48. The projection of the vector $\hat{i} - 2j + k$ on the vector $4\hat{i} - 4j + 7k$ is -----

(A)
$$\frac{\sqrt{6}}{10}$$
 (B) $\frac{3}{10}$ (C) $\frac{\sqrt{6}}{19}$ (D) $\frac{19}{9}$

49. Which of the following function is not homogeneous?

(A)
$$f(x, y) = x \left[\ln \frac{2x^2 + y^2}{x} - \ln(x + y) \right] + y^2 \tan \frac{x + 2y}{3x - y}$$
 (B) $f(x, y) = x^{\frac{1}{3}} \cdot y^{-\frac{2}{3}} \tan^{-1} \frac{x}{y}$
(C) $f(x, y) = \left[\ln \sqrt{x^2 + y^2} - \ln y \right] + ye^{\frac{x}{y}}$ (D) $f(x, y) = \frac{x - y}{x^2 + y^2}$

50. Let $\overrightarrow{OA} = \hat{i} + 3j - 2k$ and $\overrightarrow{OB} = 3\hat{i} + j - 2k$. The vector \overrightarrow{OC} bisecting the angle <i>AOB</i> and <i>C</i>								
being a point on the line AB, is								
(A) $\overrightarrow{OA} = \hat{i} + 3j - 2k$ (B) $2\hat{i} + j - 2k$ (C) $2(\hat{i} + j - k)$ (D) $\hat{i} + j - k$								
51. Let $\vec{a} = \hat{i} - k$, $\vec{a} = x\hat{i} + j + (1 - x)k$ and $\vec{c} = y\hat{i} + xj + (1 + x - y)k$. The, $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ depends on								
(A) Only x (B) Only y (C) both x and y (D) neither x nor y								
52. If $\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC}$, then A, B, C are								
(A) Collinear (B) coplanar (C) non-collinear (D) equal 2. The direction accines of any normal to the plane are								
53. The direction cosines of any normal to the xy – plane are								
(A) $1, 0, 0$ (B) $0, 0, 1$ (C) $1, 1, 0$ (D) $0, 1, 0$ 54. The equation of the plane through $(1,1,1)$ and passing through the line of intersection of								
the plane $x+2y-z+1=0$ and $3x-y-4z+3=0$ is								
(A) $8x+5y-11z+8=0$ (B) $8x+5y+11z+8=0$								
(C) $8x-5y-11z+8=0$ (D) $8x-5y-11z-8=0$								
55. A sphere of constant radius k passes through origin and meets axes in A, B, C . The								
centroid of the $\triangle ABC$ lies on the sphere								
(A) $5(x^2 + y^2 + z^2) = 4k^2$ (B) $x^2 + y^2 + z^2 = 4k^2$								
(C) $3(x^2 + y^2 + z^2) = 4k^2$ (D) $9(x^2 + y^2 + z^2) = 4k^2$								
56. Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the								
plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is								
(A) $x+2y-2z=0$ (B) $x+2y+z=0$ (C) $3x+2y-2z=0$ (D) $5x+2y-4z=0$								
57. If r_{1} and r_{2} are simple propositions, then r_{1} , as false when								
57. If <i>p</i> and <i>q</i> are simple propositions, then $p \rightarrow q$ is false, when								
 (A) p is true and q is false (B) p is false and q is true (C) p and q are true (D) p and q are false 								
58. The proposition $p \lor \square p$ is a								
(A) Contingency (B) Contradiction (C) Tautology (D) False statement								
59. $\lim_{x \to 0} \frac{1 - \cos x}{\sqrt{1 + x} - 1}$ is								
(A) 0 (B) 1 (C) 2 (D) 3								
60. If $y = \sin^{-1}\left(\frac{5\sin x + 4\cos x}{\sqrt{41}}\right)$ then $\frac{dy}{dx}$ is								
(A) 0 (B) 1 (C) 2 (D) 3								